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Simple Summary: Spinal cord injury can result in an increased vulnerability to infections, but until
recently the biological mechanisms behind this observation were not well defined. Immunosuppres-
sion and concurrent sustained peripheral inflammation after spinal cord injury have been observed in
preclinical and clinical studies, now termed spinal cord injury-induced immune depression syndrome.
Recent research indicates a key instigator of this immune dysfunction is altered sympathetic input to
lymphoid organs, such as the spleen, resulting in a wide array of secondary effects that can, in turn,
exacerbate immune pathology. In this review, we discuss what we know about immune dysfunction
after spinal cord injury, why it occurs, and how we might treat it.

Abstract: Individuals with spinal cord injuries (SCI) exhibit increased susceptibility to infection, with
pneumonia consistently ranking as a leading cause of death. Despite this statistic, chronic inflamma-
tion and concurrent immune suppression have only recently begun to be explored mechanistically.
Investigators have now identified numerous changes that occur in the peripheral immune system
post-SCI, including splenic atrophy, reduced circulating lymphocytes, and impaired lymphocyte
function. These effects stem from maladaptive changes in the spinal cord after injury, including
plasticity within the spinal sympathetic reflex circuit that results in exaggerated sympathetic output
in response to peripheral stimulation below injury level. Such pathological activity is particularly
evident after a severe high-level injury above thoracic spinal cord segment 6, greatly increasing
the risk of the development of sympathetic hyperreflexia and subsequent disrupted regulation of
lymphoid organs. Encouragingly, studies have presented evidence for promising therapies, such
as modulation of neuroimmune activity, to improve regulation of peripheral immune function. In
this review, we summarize recent publications examining (1) how various immune functions and
populations are affected, (2) mechanisms behind SCI-induced immune dysfunction, and (3) poten-
tial interventions to improve SCI individuals’ immunological function to strengthen resistance to
potentially deadly infections.

Keywords: autonomic dysreflexia; spinal cord injury; immune dysfunction; SCI-IDS

1. Introduction

Spinal cord injury (SCI) is a traumatic injury that results in disrupted bidirectional
communication between higher levels of the central nervous system (CNS) and the body
below the level of the injury. While SCI is often associated with motor and sensory dysfunc-
tion, SCI results in a myriad of other systemic functional changes and deficits, including
altered immune function. Immune dysfunction after SCI has long been documented. For
instance, SCI individuals exhibit more frequent infections, with pneumonia ranking as
a leading cause of death after injury [1]. Even when death is not the eventual outcome,
pneumonia and post-operative wound infections are associated with impaired functional
recovery in SCI persons [2]. While this increased susceptibility to infection was historically
attributed to the medical interventions routinely administered in the acute phase after
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SCI [3], it is becoming apparent that the rise in infections is largely due to secondary
changes in peripheral immunity that occur after injury [4]. Studies have only recently
begun to reveal the underlying biological mechanisms of immune pathology after injury.
Individuals with SCI display various immunological changes, including immunosuppres-
sion despite concurrent chronic systemic low-grade inflammation, termed SCI-induced
immune depression syndrome (SCI-IDS) (Figure 1) [5,6]. Unfortunately, because of our lim-
ited understanding of mechanisms that contribute to SCI-IDS, there are no FDA-approved
treatments for use in SCI individuals that specifically improve immune function. Therefore,
SCI-IDS represents a problem with myriad remaining questions. Importantly, identification
of potential therapeutic targets to improve immune function would make a significant
and lasting impact on the general health and well-being of the SCI community. In this
review, we summarize the current literature describing the chronic peripheral inflammation
and increased susceptibility to infection characteristic of SCI-IDS, the mechanisms behind
the development of immune dysfunction, and how these pathological changes might be
ameliorated therapeutically.
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Figure 1. After spinal cord injury (SCI), both chronic systemic inflammation and immunosuppression
result in SCI-induced immune depression syndrome (SCI-IDS). Altered immune function results
in increased susceptibility to infection and exacerbated secondary complications of SCI. In turn,
these secondary complications and infections may create a feedback loop which amplifies immune
dysfunction. Created using BioRender.com accessed on 2 September 2021.

2. The Consequences of Peripheral Immune Dysfunction
2.1. Chronic Low-Grade Inflammation

While much research has focused on the resulting neuroinflammation in the spinal
cord after SCI, there is also persistent, low-grade, peripheral inflammation that has been
identified in SCI individuals (Figure 1) [6,7]. Examination of serum cytokine levels from
SCI persons revealed that proinflammatory cytokines IL-2, IL-6, tumor necrosis factor alpha
(TNFα), and/or IL-1RA were significantly increased compared to their levels in able-bodied
subjects [8,9]. Interestingly, SCI subjects who experienced pain, urinary tract infections
(UTIs), or pressure ulcers displayed higher levels of these proinflammatory cytokines than
those without [9]. Another study found that C-reactive protein (CRP), IL-2, and granulocyte
macrophage colony stimulating factor (GM-CSF) were significantly increased while TNFα,
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IL-4, and granulocyte colony stimulating factor (G-CSF) were significantly decreased in SCI
persons compared to controls [10]. In men with SCI regardless of injury level, blood serum
concentration of CRP, IL-6, endothelin-1, and soluble vascular cell adhesion molecule (sV-
CAM) were all significantly increased, suggestive of chronic low-grade inflammation [11].
A recent whole-blood gene expression study found significantly upregulated Toll-like
receptor signaling pathway genes in participants with chronic SCI compared to those
without, supporting the presence of systemic inflammation [12]. Activation of circulating
CD3+ and CD4+ T cells was increased after SCI, although CCR4+ HLA-DR+ regulatory T
cells were concurrently expanded [12]. The exact roles of regulatory T cells are complex,
and the functional implications of increased regulatory T cells are not fully understood.
Moreover, it is not yet known if the increase in the CCR4+ HLA-DR+ regulatory T cells
causes immune dysfunction or they expand in response to an altered immune environment.
Nevertheless, these data reveal immune dysfunction after chronic SCI in humans, and the
increased activation of T cells may contribute to long-term inflammation.

2.2. Increased Susceptibility to Infection

Despite a sustained state of inflammation in SCI persons, they experience increased
susceptibility to pathogenic infection due to concurrent immunodeficiency (Figure 1).
The significance of this is underscored by clinical data examining causes of death in SCI
individuals [13–16]. The leading cause of death within the first year after a traumatic SCI
in the Czech Republic was found to be pneumonia infection (17.1%), with UTIs making
up 7.3% of all deaths [16]. Pneumonia remained the leading cause of death after a year
in the SCI population at 14% of all deaths, with UTIs at 10.3%, pressure ulcers at 12.1%,
and sepsis of unknown origin at 6.5%, making infections the leading cause of mortality
after SCI at over 40% of all deaths [16]. In a 70-year study from Britain, the leading cause of
death after SCI was respiratory (29.3%) with infections such as pneumonia making up the
vast majority of these (23.5% of all deaths) [15]. Another 7.8% of deaths in this study were
attributed to urinary tract infections and sepsis of unknown origin, further demonstrating
the gravity of infections in SCI individuals [15].

Why are respiratory infections so prevalent and deadly in the SCI population? Pre-
clinical and clinical studies indicate that injury level and severity contribute to infection
susceptibility. Clinically, over 40% of deaths in the tetraplegic population of the long-term
study in Britain were attributed to respiratory causes, including infection [15]. In a small
study from Germany, pneumonia and influenza ranked in the top three causes of death for
tetraplegics, but not paraplegics, and tetraplegic subjects had a significantly reduced life
expectancy compared to paraplegics [17]. Part of the problem is that higher-level injuries
result in loss of innervation to motor neurons that innervate the diaphragm and intercostal
muscles, resulting in compromised respiratory motor control (reviewed in [18]). The lack of
mobility in SCI persons also exacerbates this issue since exercise, like walking and running,
has been shown to reduce pneumonia-related mortality [19–22]. However, what may make
respiratory infections particularly deadly for SCI persons is that higher injuries above the
level of thoracic segment 6 (T6) result in disruption of descending supraspinal input to
sympathetic preganglionic neurons (SPNs) that innervate immune organs and modulate
immune function, which we describe in more detail in a later section. This combination
results in a heavily reduced capacity to effectively clear respiratory infections.

Preclinical studies in animal models have further increased our understanding of
impaired immune responses and subsequent increased susceptibility to infection following
SCI [23–26]. Due to immune impairment, mice with thoracic SCI exhibit reduced ability
to clear influenza or mouse hepatitis virus (MHV) infection in the lungs or liver, respec-
tively [23,26]. In fact, mortality rates in infected SCI mice were 40% after influenza infection
and 100% after MHV infection. Specifically, these mice exhibited reduced numbers of
influenza-specific CD8+ T cells or MHV-specific CD4+ T cells after viral infection [23,26].
In a follow-up influenza study, deficient CD8+ T cell infiltration and numbers were discov-
ered to be mediated via corticosterone signaling, and administration of mifepristone to
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inhibit corticosterone throughout the experiment rescued numbers of virus-specific CD8+

T cells [27]. In another study, high thoracic (i.e., T3) hemisection in a mouse model of
inducible bacterial pneumonia resulted in increased bacterial load in the lungs, indicative
of inability to clear infection [25]. Moreover, rats with complete transection at T10 devel-
oped UTIs when inoculated transurethrally with a lower dose of E. coli than uninjured
rats [24]. Histological analysis indicated that while inflammation in the bladder was virtu-
ally resolved by 14 days post-infection in uninjured controls, SCI rats displayed chronic
inflammation of the bladder with mononuclear cell aggregates located within the lamina
propria. Together, these studies demonstrate the independent risk of SCI on infection
rates across a wide range of infection types, further underscoring the need for therapeutic
advancement in treating SCI-IDS.

2.3. Effects of Immune Dysfunction on Other Physiological Processes

There are common secondary complications after SCI that are likely worsened by the
chronic immune dysfunction observed in SCI persons (Figure 1). Osteoporosis is ubiquitous
in the SCI population, resulting in acute rapid reduction in bone density after injury that
stabilizes after 2–3 years; this bone loss also increases susceptibility to fractures [28,29].
While the role of immune function in the pathogenesis of osteoporosis in the SCI population
is not well described, osteoporosis independent of SCI is an inflammatory condition that
progresses due to immune dysfunction, cytokine release, and a persistent low-grade
inflammatory state typically seen in aging [30–32]. Therefore, it is not unreasonable to
suggest that the long-term inflammation observed in SCI individuals would contribute to
osteoporosis pathology [33].

Another secondary complication after SCI is neuropathic pain, which presents in
anywhere from 18–96% of SCI persons [34–39]. As with osteoporosis, it is well established
that both peripheral and central inflammation contribute to the development of neuropathic
pain [40–42]. As described above, one study found that SCI persons presenting with
neuropathic pain exhibited elevated serum levels of IL-6 and IL-1RA compared to those
without neuropathic pain [9]. A recent clinical study indicated that an anti-inflammatory
diet in SCI individuals resulted in reduced composite score of proinflammatory mediators
IL-2, IL-6, IL-1β, TNF-α, and interferon gamma (IFN-γ) and was associated with decreased
neuropathic pain score [43].

SCI individuals are frequently plagued by pressure ulcers due to immobility and
resultant tissue ischemia. Data indicate that skin ulcers and cutaneous wounds heal more
slowly after thoracic SCI in mice [44]. Cutaneous wounds normally progress through
four stages of healing: hemostasis, inflammation and cytokine release, cytokine-induced
epithelial and vascular proliferation, and wound resolution [45]. In the general population,
wounds such as pressure ulcers often persist chronically in an inflammatory state that
inhibits healing progression [45,46]. In line with this, clinical evidence suggests that anti-
inflammatory topical treatments, such as TNFα inhibition via infliximab, can improve
wound healing of chronic ulcers [47]. However, SCI persons exhibit sustained baseline
vasodilation due to sympathetic denervation. This sustained baseline vasodilation and
subsequent hypotension has been hypothesized to impair the requisite inflammation phase
of wound healing, inhibiting wound healing at an earlier stage of repair [48]. In fact,
evidence specifically from SCI models has shown that cutaneous inflammatory stimulation
does not elicit appropriate localized inflammation. After complete T3 transection, mice
injected subcutaneously with complete Freud’s adjuvant emulsion exhibited reduced
cutaneous localized inflammation as measured by both fluorescent IVIS imaging and
magnetic resonance imaging (MRI) [49]. Therefore, it seems that both persistent low-grade
inflammation and immunosuppression after SCI may impair pressure ulcers from recovery.

The general consensus is that SCI increases the risk of atherosclerotic diseases, such as
coronary artery disease and cardiovascular disease, via a multitude of secondary complica-
tions, from obesity to metabolic syndrome and sustained, low-grade inflammation [11,50–54].
While recent clinical research indicates that presentation of atherosclerotic pathology in
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SCI persons is not solely dependent on increased inflammatory markers [55,56], it may
be exacerbated by increased inflammation [56]. Preclinical research using a mouse model
of atherosclerotic disease (ApoE−/−) found that atherosclerotic lesions were significantly
increased in mice with a T9 contusion injury compared to uninjured controls [57]. While
the development of atherosclerosis was associated with increased plasma levels of IL-
1β, TNFα, IL-6, monocyte chemoattractant protein-1 (MCP-1), and C-C motif chemokine
ligand-5 (CCL-5), increased MCP-1 and CCL-5 were specifically observed in SCI mice
versus uninjured controls. Importantly, the use of an anti-inflammatory salicylate drug was
found to prevent SCI-induced exacerbation of atherosclerosis, possibly via the reduction in
TNFα, MCP-1, and CCL-5 plasma levels [57].

Research therefore indicates that immune dysfunction in SCI individuals is of patho-
logical consequence and resolution of chronic inflammation and concurrent immunosup-
pression could prove highly beneficial in improving quality of life.

3. Why Does Peripheral Immune Dysfunction Occur?
3.1. Disruption of Descending Central Pathways

SCI, particularly above the level of T6, can result in loss of modulatory input to im-
mune organs via autonomic innervation and the hypothalamic-pituitary-adrenal (HPA)
axis (Figure 2). The spleen, the largest lymphoid organ, has been better studied in relation
to SCI-IDS than any other lymphoid tissue and shows dramatic changes after disruption
of modulatory innervation [58]. Upon SPN activation, which normally occurs due to
stress in the “fight or flight” response, post-ganglionic terminals in the spleen release nore-
pinephrine (NE) directly to splenocytes in the white pulp and the HPA axis is stimulated
to release glucocorticoids (GCs) from the adrenal gland (Figure 2) [59,60]. Under homeo-
static conditions, splenic lymphocytes express anti-inflammatory β-adrenergic receptors
(β-AR) that promote reduced cell proliferation, decreased proinflammatory cytokine re-
lease, and reduced antibody production. GCs from the adrenal glands mediate similar
anti-inflammatory effects via GC receptors [61]. During inflammation, T cells and B cells
highly express α-adrenergic receptors (α-AR) that promote maturation, activation, and
migration (reviewed in [58,62]).

After SCI, supraspinal control of the sympathetic system is disrupted and sympathetic
activity becomes dysregulated. Acutely, this results in increased GC release from the
adrenal glands that impairs immune function (Figure 2) [63]. Over time, maladaptive plas-
ticity of the sympathetic circuitry within the spinal cord below the level of injury develops.
In people with severe high-level SCI, the combination of interruption of supraspinal input
to sympathetic circuitry caudal to the level of injury and the plasticity of this circuit leads to
sympathetic hyperreflexia, which overtly manifests as autonomic dysreflexia (AD) [64–66].
This sympathetic hyperactivity results in abnormally high levels of NE in the spleen
and activation of β-ARs on lymphocytes that result in sustained immunosuppression
(Figure 2) [67,68]. In turn, this chronic immunosuppression increases susceptibility to in-
fection as described above. Sympathetic innervation and the HPA axis have been identified
as both independent and interrelated causes of immune dysfunction after SCI [63,64].
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Figure 2. After a SCI, there is an acute drop in systemic norepinephrine (NE) and an increase in
plasma glucocorticoids (GCs) released by the adrenal glands. Chronically, increased neural circuit
plasticity results in sympathetic hyperreflexia and release of NE by sympathetic post-ganglionic
neurons, including those targeting the spleen and other lymphoid organs such as the bone marrow.
These changes after SCI result in measurable altered immune profile and function. Created using
BioRender.com accessed on 2 September 2021.

3.2. Sympathetic Hyperreflexia

Recent studies have determined that sympathetic hyperreflexia contributes to SCI-
IDS. Moreover, because sympathetic hyperreflexia development is correlated with injury
level and severity, the extent and nature of immune dysfunction after SCI is injury level
and severity dependent [25,58,63–65,67,69]. For instance, in the human SCI population,
tetraplegic individuals display exacerbated increases in levels of the proinflammatory
marker CRP compared to paraplegic individuals [70]. While chronic SCI persons exhibit
fewer circulating CD3+ and CD4+ T cells and increased activation of remaining T cells,
increased activation is particularly evident in those with complete or high level (above T6)
injuries [71]. One preclinical study using rats showed that both pro-inflammatory and anti-
inflammatory markers in plasma were significantly higher following a clip compression
injury at T6/7 than at cervical level 6/7 (C6/7) [69]. It was suggested that this difference
was due to the development of SCI-IDS in the cervically injured rats, though this was not
directly demonstrated. Similarly, mice displayed splenic atrophy and leucopenia after a
complete transection injury at T3 but not at T9 [64,65]. By 5 weeks post-injury, 50–70% of
leukocytes were depleted, with a 60% reduction in the splenic B cell population. Moreover,
T3-transected mice produced significantly lower antibody titers than uninjured controls
when immunized with ovalbumin (OVA) antigen. These changes coincided with the
development of AD [64]. Splenic white pulp atrophy and loss of B cells was exacerbated
in the T3 SCI animals when sympathetic hyperreflexia was experimentally elicited with
noxious sensory stimuli, such as colorectal distension (CRD). CRD also worsened the
impaired immunological response after OVA antigen inoculation. Underscoring this, there
was no significant effect on splenic B cells in the T9 injured group, which did not experience
sympathetic hyperreflexia, indicating that sympathetic hyperreflexia is a causative factor
in the development of SCI-IDS (Figure 2) [64].
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Increased activation of vesicular glutamate transporter 2 (VGLUT2)+ excitatory in-
terneurons in the lateral horn of thoracic spinal cord after injury has been implicated in the
development of sympathetic hyperreflexia. These glutamatergic interneurons synapse on
SPNs, and the number of presynaptic puncta contacting SPNs increases with time after
SCI [65]. Chemogenetics, specifically designer receptors exclusively activated by designer
drugs (DREADD), have also been used preclinically with great success to effectively deter-
mine the role of these excitatory interneurons in the intermediate and medial grey matter
of the thoracic spinal cord after injury [65]. In this study, the researchers performed a T3
SCI in adult mice that expressed Gi/o-coupled human muscarinic M4 (hM4Di DREADD)
in VGLUT2+ interneurons within the thoracic spinal cord. Clozapine-N-oxide (CNO)
was injected starting two weeks after injury to silence the hM4Di-expressing, excitatory
interneurons in thoracic spinal cord. Mice with this treatment exhibited normal splenic size
and numbers of CD4+ T cells, CD8+ T cells, and B220+ B cells [65]. While this study did not
directly examine whether these immune changes were functionally relevant, it revealed
the causative role of maladaptive neural plasticity in immunological changes after SCI
and indicated that targeting glutamatergic interneurons specifically may be a promising
therapeutic target to ameliorate immune dysfunction.

Concurrent increases in blood endogenous GCs and splenic NE levels also appear
to play a role in SCI-IDS (Figure 2). Systemic coadministration of selective antagonists
for β-2 adrenergic and GC receptors resulted in reduced splenic atrophy and normal
antibody titer after OVA immunization, suggesting the importance of sympathetic control
in regulating immune function [64]. Importantly, severing the splenic nerve to obliterate
sympathetic innervation prior to T3 SCI in mice abrogated the increased susceptibility to
pneumonia infection normally observed in animals after T3 SCI with intact sympathetic
signaling [25]. These studies indicate that the severity of immune dysfunction is strongly
tied to sympathetic activity.

A notable caveat of preclinical studies using complete SCI models to elicit SCI-IDS is
whether this complete loss of supraspinal input to the SPNs is recapitulated in humans
with SCI. This is highly relevant because human injuries classified as clinically complete
often are anatomically incomplete and have some tissue sparing [72–76]. So then, what
happens to immune function after incomplete SCI, particularly below the level of T6?
Preclinical studies found that splenic atrophy did not occur in rats with moderate, incom-
plete injuries at either cervical (C6/7) or thoracic (T6/7) levels [69,77]. However, splenic
NE, corticosterone, and leukopenia were significantly increased within a week after the
incomplete thoracic injuries but not cervical injuries [77]. Additionally, circulating pro-
and anti-inflammatory cytokines and chemokines were increased in thoracic-injured rats
compared to those with cervical injuries [69]. In line with this, some preclinical studies
already described in this review reported changes in immune profile and function after
incomplete SCI, even below T6 [26,27,78]. One factor that may contribute to this is that
some of the SPNs that modulate sympathetic input to the spleen are located within T6/T7
spinal cord and are likely directly injured by even a moderate, mid-level SCI.

Our personal observations further support the concept of SCI-induced immune
changes in the absence of overt splenic atrophy. While we found measurable splenic
atrophy at 8 weeks post-complete T3 transection in rats, we observed that the splenic
immune cell profile was already significantly altered by 4 weeks post-complete T3 SCI,
though the spleens grossly appeared similar at that point (unpublished personal observa-
tions; [79,80]).

As described in earlier sections, one clinical study found that proinflammatory mark-
ers, such as CRP, were increased after SCI regardless of injury level [11], while another
study found that the severity of increased CRP correlated with injury level [70]. Similarly,
while activation of T cells was significantly increased in the general SCI population, in-
dividuals with complete or high-level injuries above T6 displayed a more pronounced
effect [71]. What is not clear from these aforementioned studies is how injuries at different
levels and severities affect sympathetic tone and if this plays a role in the disparate results
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described. It appears that injury level and severity contribute to the extent of immune
dysfunction after SCI, but this is not absolute and the level dependence of SCI-induced
immune dysfunction is likely complex.

3.3. Aberrant Activity of the HPA Axis

One recent study found that dysregulated HPA axis function after sympathetic disrup-
tion corresponds with more severe acute leucopenia after high thoracic injury. Specifically,
mice with a T1 complete transection displayed acute reduction in systemic NE and increase
in plasma GCs while those with a T9 complete transection did not [63]. This increase in
GCs was due to adrenal gland denervation after the high thoracic complete injury resulted
in aberrant hypercortisolism. In line with this, T1-transected mice displayed reduced
numbers of CD19+ B cells, CD4+ or CD8+ T cells, CD11b+ monocytes, NK1.1+ natural killer
(NK) cells, and CD11c+ dendritic cells (DC) in multiple lymphoid organs, including the
spleen (Figure 2).

3.4. Disrupted Bone Marrow Function

Bone marrow is a key hematopoietic organ where bone marrow hematopoietic stem
cells reside that give rise to myeloid and lymphoid cells, replenishing immune cell popula-
tions daily. Sympathetic innervation to the bone marrow regulates both bone turnover and
immune cell production (reviewed in [81,82]). It is worth mentioning that the ubiquitous os-
teoporosis experienced by the SCI population is exacerbated by sympathetic hyperreflexia,
resulting in reduced bone production and increased bone resorption [83–85]. These changes
in bone turnover are part of an interconnected loop in which bone denervation promotes
osteoporosis and immune dysfunction, which in turn bidirectionally affect each other.

Just how exactly bone marrow-derived immunity changes after SCI has been described
in a few publications [86–88]. Clinically, persons with SCI exhibit impaired bone marrow
stem cell function [86,87]. In particular, SCI individuals displayed impaired NK cytolytic
function, reduced T cell killer function, and lower IgG levels indicative of inhibited B
cell function despite normal circulating lymphocyte numbers. When bone marrow as-
pirates were cultured, the number of long-term culture-initiating cells was significantly
reduced in cultures from SCI persons, particularly tetraplegics, indicative of decreased
progenitor growth [86]. Preclinically, a recent publication explored the mechanisms be-
hind SCI-induced bone marrow hematopoietic dysfunction [88]. After SCI, mice exhibited
increased hematopoietic stem cell proliferation and accumulation in the bone marrow,
as well as impaired mobilization regardless of injury level and severity (Figure 2). In
T3-transected mice specifically, expression of bone marrow cytokines and chemokines
was significantly increased, and C-X-C motif chemokine ligand 12 (CXCL12)/C-X-C motif
chemokine receptor 4 (CXCR4) signaling specifically led to sequestration of hematopoietic
stem cells and mature B cells. These changes appear to have functional implications, as the
bone marrow response to inflammatory stimulation with lipopolysaccharide (LPS) was
impaired after SCI [88].

3.5. Obesity

Several aforementioned studies observed increased susceptibility to various infections
in rodents with lower thoracic injuries at T9/10, which largely leave descending control of
sympathetic circuitry intact [23]. Therefore, while disruption of sympathetic innervation
to lymphoid organs strongly contributes to immune dysfunction after SCI, it is not the
only cause. Although the primary insult may be in the spinal cord, SCI is an injury of
nearly every system in the body, from gastrointestinal to cardiovascular. The multi-system
dysfunction observed after SCI results in a clinical population more likely to suffer from
complications such as obesity and type 2 diabetes [89–91]. Indeed, while sympathetic
hyperreflexia and subsequent AD appear to be a major underlying cause of SCI-IDS,
concomitant chronic low-grade inflammation has been strongly linked to neurogenic
obesity (reviewed in [92]) as well as other secondary complications of SCI (reviewed
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in [6,93]). Importantly, these conditions also can contribute to the development of immune
dysfunction after SCI.

Obesity, which affects approximately 66% of SCI individuals [94], is thought to be a
primary cause of the chronic low-grade inflammation observed after SCI [92]. Adipocytes
have been shown to release “adipokines” such as TNFα, IL-6, and MCP-1, resulting in
a systemic proinflammatory state in obesity [92,95]. In the SCI population specifically,
higher waist circumference is associated with elevated CRP, a proinflammatory cytokine
implicated in cardiovascular disease [70,96]. Evidence indicates that exercise to mitigate
obesity can reduce systemic inflammation [97,98]. In SCI individuals specifically, plasma
levels of proinflammatory cytokines TNFα and IL-6 were reduced after an arm cranking
exercise regimen that improved anthropometric index, decreased waist circumference,
and decreased plasma concentration of leptin [99]. Similarly, 10 weeks of functional
electrical stimulation cycling by SCI persons resulted in increased muscle mass by dual
X-ray absorptiometry and significantly reduced levels of proinflammatory cytokines IL-6,
TNFα, and CRP [100].

Obesity, in turn, increases the risk of developing type 2 diabetes [101], a condition
which is strongly associated with persistent systemic inflammation (reviewed in [102]).
Studies have shown that SCI individuals are at higher risk of developing type 2 dia-
betes [89,91,103]. Interestingly, type 2 diabetes is considered to be immune-driven yet also
contributes to immunosuppression via diabetes-mediated hyperglycemia [104,105]. While
the role of type 2 diabetes in immune dysfunction specifically in the SCI population has
yet to be established, it is highly possible that the known effects of insulin resistance and
hyperglycemia on immunity carry over. These secondary complications arising from SCI
therefore provide some explanation as to why SCI persons experience chronic low-grade
systemic inflammation.

3.6. Repetitive Infections and Wounds

Persistent bacterial infections are thought to manipulate the immune system to prevent
clearance [106,107]. In SCI individuals, repetitive infections, namely UTIs and infected
chronic pressure ulcers, may contribute to both systemic low-grade inflammation and
concurrent immunosuppression. As described in an earlier section, when SCI persons
present with UTIs or pressure ulcers, serum levels of proinflammatory cytokines such as IL-
6 and TNFα are significantly higher than in SCI persons without these infections [9]. This
would suggest that ongoing infection can exacerbate the systemic inflammation observed
after SCI. Along with this, SCI persons with an ongoing UTI displayed higher levels
of urine IgA concentrations compared to those without infection, and SCI individuals
displayed sustained IgG response to bacterial antigens despite no differences in circulating
T cells specific to UTI bacterial antigens, compared to controls [10]. Interestingly, AD events
have been documented to result in reduced oxygenation and increased perspiration of
the skin, which in turn may contribute to increased susceptibility to pressure ulcers [108].
In turn, pressure ulcers and UTIs can both serve as stimuli that elicit AD events, which
can further impair immune function after SCI, as described above. While it is still unclear
to what degree persistent UTIs and pressure ulcer infections modulate immune activity
in SCI individuals, it is apparent that an ongoing infection correlates with additional
immunological changes.

4. Potential Interventions to Improve Immunological Function Post-SCI
4.1. A Critical Need for Clinical Therapies

There are no currently approved therapies specifically targeting improving the im-
mune system for SCI individuals. In fact, the routine use of methylprednisolone in acute
treatment of SCI persons in the United States is of debatable benefit for various reasons
(reviewed in [109,110]), including the known effect of immunosuppression. While some
studies have suggested that motor function recovery may be incrementally improved with
methylprednisolone treatment, others have not found measurable effects but did note ap-
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preciable side effects [111,112]. Therefore, whether using methylprednisolone is of benefit
is highly debated, even more so now that attention has turned to its immunosuppressive
properties as a corticosteroid [113]. Another standard treatment for SCI individuals is
rehabilitative medicine. With respect to systemic inflammation specifically, several studies
have found that exercise lowers circulating levels of TNFα, IL-6, and CRP [99,114].

One method to improve quality of life in SCI individuals would be to reduce likeli-
hood of infection. Clinical studies have examined the prophylactic use of antibiotics to
prevent UTIs in the SCI population [14,115]. However, while several groups found that
prophylactic low-dose clindamycin, sulfamethoxazole, nitrofurantoin, trimethoprim, or
cefalexin treatment was effective in significantly reducing the rate of UTIs during extended
treatment [116–118], another group found that prophylactic sulfamethoxazole or nitro-
furantoin was not effective in reducing UTIs in the SCI population [119]. Additionally,
antibiotic-resistant bacterial colonization of the bladder is common with prophylactic use
of antibiotics in SCI persons [118,120], suggesting that prevention of infections via this
route is unlikely to prove beneficial in the long term. To circumvent this problem, two
studies attempted long-term prophylactic use of four antibiotics on a cyclical regimen; this
method resulted in fewer yearly UTIs in SCI individuals [121,122]. Prophylactic antibiotic
treatment has also been recommended by the North American Spine Society in cases of
spinal surgery [123], with clinical studies often, but not always, indicating a reduction in
post-operative infections, particularly with multiple days of treatment [124,125]. How these
treatments might affect other types of infections in SCI persons remains unknown. Addi-
tionally, how recurring use of antibiotics affects the SCI body’s gut microbiome (discussed
in more detail below) and the downstream consequences of that is not well understood.

Alternatively, therapeutic options could address underlying causes of immune dys-
function. As mentioned above, one cause of SCI-IDS is sympathetic hyperreflexia. There
have been multiple preclinical and clinical studies using procedures and pharmacological
interventions to both limit the onset of AD and manage it (reviewed in [126,127]). The
current medical advice is that persons presenting with AD manage their symptoms us-
ing nonpharmacological methods, such as removing the offending stimulus (i.e., blocked
catheter, tight clothing, or bowel impaction) and moving to a sitting position [128]. While
these methods are typically successful in eventually ending the AD event, sustained high
blood pressure can occur that demands further medical attention [66,128]. Commonly used
drugs for the treatment of AD solely mitigate hypertensive symptoms [127], and therefore
have short-lived effects that do not cure the underlying disorder. These drugs include
nifedipine and nitrates, amongst other hypertension medications, such as angiotensin I
converting enzyme inhibitors. Epidural stimulation has also been used to stabilize variable
blood pressure in SCI persons [129]. Interestingly, preclinical work has revealed mixed data
on the use of exercise to mitigate AD. While one study found that passive hindlimb cycling
or active forelimb swimming did not change AD severity after T2 contusion injury in
rats [130], another study found that passive hindlimb cycling after complete T3 transection
did reduce the severity of AD [131]. Other studies have used botulinum toxin, capsaicin,
anticholinergics, or surgical procedures to prevent the development or continuation of
AD [126]. These treatments have had variable success in reduction in AD events in SCI per-
sons [126,132,133]. However, it is important to keep in mind that sympathetic hyperreflexia
affects not only the vasculature but also any organ that receives sympathetic innervation.
None of these studies have examined effects on immune function, regardless of observed
changes in AD presentation. It is possible that examining immune function after such
treatments would reveal immunological changes, which would be of interest given the im-
portance of improving immunity post-SCI. Additionally, there are no approved treatments
to prevent the development of sympathetic hyperreflexia from the outset. Therefore, there
is a dire need for the identification of treatments that improve immune function after SCI.
In the following sections, we summarize recent preclinical research examining potential
means to specifically improve immune function after SCI.
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4.2. Gabapentin

Some preclinical studies have attempted to reduce the maladaptive neural plasticity
that contributes to AD worsening via pharmacological intervention. Gabapentin (GBP), an
anti-seizure and neuropathic pain medication known to prevent synaptogenesis at high
doses, has been used after SCI in preclinical models to examine its effect on AD. Several
studies have indicated that acute treatment with a low-dose of GBP (50 mg/kg) or chronic
treatment with a very high-dose of GBP (400 mg/kg/day) starting the day of complete
T4 SCI in rats decreased mean arterial pressure in response to CRD [134–137]. However,
chronic treatment with this very high-dose of GBP (400 mg/kg/day) also increased the
frequency of spontaneous AD events [136]. On the other hand, in another recent study,
chronic treatment with a slightly lower dose of GBP (200 mg/kg/day) starting one day after
complete T4 SCI in mice prevented excitatory synaptic formation and sprouting of sensory
afferents, two examples of spinal plasticity associated with sympathetic hyperreflexia.
This resulted in reduced frequency of spontaneous AD events, attenuated induced AD
by CRD, and, importantly, mitigated changes in immune profile after SCI (Figure 3) [137].
Additionally, chronic treatment with this dose of GBP resulted in prevention of splenic
atrophy and maintenance of CD3+ T cell and B220+ B cell populations in the spleen
(Figure 3) [137]. One important difference in these seemingly conflicting studies is that
Eldahan et al. did not observe any changes in excitatory or inhibitory presynaptic markers
in the lumbosacral dorsal horn at the very high dose of GBP. Species/strain dependent
differences may also account for the divergent results. While studies have presented
conflicting data on the use of GBP for prevention of AD, the data from Brennan et al.
support the notion that suppression of neural plasticity in the sympathetic circuit below
the level of injury can improve the immune profile after SCI.
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reduce autonomic dysreflexia (AD) and improve splenic immune cell profile. Separately, studies have
examined the modulation of gut microbiota, either through probiotic treatment or deletion of Pde4b, to
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circulating markers of inflammation. Created using BioRender.com accessed on 2 September 2021.
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4.3. Inhibiting TNFa

Other studies have targeted TNFα signaling to improve sympathetic hyperreflexia and
splenic function. TNFα expression is persistently upregulated in the spinal cord after injury,
contributing to neural plasticity. TNFα exists in two forms; its soluble form is a product of
transmembrane TNFα cleavage by TNFα-converting enzyme. While the former is highly
proinflammatory and plays a role in neural plasticity below the level of injury [138], the
latter has been shown to have neuroprotective effects [139,140]. After SCI, specific central
inhibition of soluble TNFα using the experimental compound XPro1595, which inhibits
soluble TNFα specifically, resulted in improved functional recovery [141]. Importantly,
these effects were not replicated with central administration of etanercept, a pan-TNFα
inhibitor that affects both soluble and transmembrane TNFα [141]. This highlights the
particular role of soluble TNFα in SCI pathology, and paved the way for examination of
how soluble TNFα inhibition after SCI might affect other facets of recovery, including
immune function.

We recently reported that continuous intrathecal administration of XPro1595 in rats
with complete T3 transections beginning up to 3 days post-injury significantly reduced
intraspinal plasticity within the sympathetic circuit and lowered the frequency and severity
of AD events (Figure 3) [79,80]. Additionally, in XPro1595-treated rats, splenic atrophy was
prevented, and splenic immune cell profile was similar to non-injured control spleens, in
contrast to spleens from injured animals without XPro1595 that exhibited an altered im-
mune cell profile. In particular, CD45R+ B cells, CD8+ T cells, and CD11b/c+ macrophages
were returned to uninjured numbers, while CD4+CD25+FoxP3+ regulatory T cells were
significantly increased (Figure 3) [79,80]. Improved splenic immune profile corresponded
with reduced sympathetic, noradrenergic sprouting in the spleen [79]. Excitingly, the
improved immune profile in turn resulted in reduced susceptibility to pneumonia infection,
with no XPro1595-treated injured rats dying while nearly 40% of vehicle-treated injured
rats succumbed to infection. While vehicle-treated injured rats that survived exhibited
persistent weight loss at 10 days post-infection, those that received XPro1595 returned to
baseline [79]. However, when XPro1595 treatment was delayed until 2 weeks post-injury,
no beneficial effects on AD were observed, suggesting that administration at some point
prior to 2 weeks is vital to the effectiveness of this particular treatment strategy [142]. Nev-
ertheless, the benefit of central soluble TNFα inhibition after subacute injury to attenuate
sympathetic hyperreflexia and to improve downstream immune function is particularly
promising given the striking increase in resistance to pneumonia infection.

4.4. Modulation of Gut Microbiota

Another possible therapeutic option may exist in gut microbiota. Notably, ~70% of
immune cells reside in gut-associated lymphoid tissues (GALTs), where they respond
to microbial antigens and metabolites produced in the gut and serve as the first line of
defense against pathogens entering via the gastrointestinal route [143]. The links between
gut microbiota, neurological function, and immunological pathology are research topics
of great interest in diseases ranging from multiple sclerosis to autism [144–147], and the
downstream effects of SCI on this complex system are only now beginning to be revealed.

In a landmark study examining microbiota changes after SCI, a T9 contusive injury in
mice resulted in immune disruption, e.g., altered numbers of B220+ B cells, CD4+ and CD8+

T cells, CD11b+ macrophages, and CD11c+ DCs in GALT mesenteric lymph nodes and
Peyer’s Patches [78]. Importantly, the researchers discovered that therapeutic treatment
with probiotics in the first month post-injury resulted in a more anti-inflammatory GALT
profile, increasing numbers of CD4+CD25+FoxP3+ regulatory T cells and CD11c+ DCs
in the mesenteric lymph nodes (Figure 3) [78]. Another group examined the gut micro-
biome composition of humans with SCI and found that bacterial phyla that produce the
short-chain fatty acid butyrate—which is associated with having strong anti-inflammatory
effects—were significantly reduced [148]. While not directly demonstrated, these gut
microbiome changes might contribute to a proinflammatory state in SCI persons [148].
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Since these groundbreaking studies, there has been an explosion of interest in how gut
microbiota are altered after SCI, and how modulation of the gut microbiome might improve
both neurological and immunological outcomes for SCI individuals [149–156]. In regard to
peripheral immunity, a recent study demonstrated that after a T9 contusive injury in mice,
the gut microbiome displayed a reduced Firmicutes to Bacteroidetes phyla ratio as well as an
increase in the phylum Proteobacteria that contains Gram-negative bacteria that produce
the endotoxin LPS, which is associated with systemic inflammation [157]. In fact, the re-
searchers found that sCD14, a marker of systemic inflammation, was significantly increased
at 42 days post-SCI. Interestingly, deletion of Pde4b to disrupt the TLR4/TNFα/PDE4B
axis mitigated the microbiome imbalance observed after SCI, and resulted in reduced
endotoxin and sCD14 serum levels, suggestive of reduced inflammation (Figure 3) [157].
Taken together, these studies strongly suggest that improving gut microbiota health may in
turn improve immunological function in SCI persons, which is particularly exciting given
the accessibility of the gut for therapeutic intervention.

5. Conclusions

Immune changes post-SCI have major implications in the quality of life of SCI indi-
viduals as well as their treatment. With disruption of descending CNS input to immune
organs as well as secondary complications of SCI contributing to SCI-IDS, individuals
with SCI are faced with a constant state of inflammation and increased risk of infection.
Promisingly, recent preclinical research indicates a wide range of potential interventions
that may be able to improve immune function and reduce the risk of infection. However,
whether these effects are replicated after chronic immune dysfunction has already occurred,
which populations of immune cells should be targeted, and how this affects immunity to
various infection types in persons are all unknown facets of immune modulation post-SCI.
Importantly, while there are many gaps in knowledge regarding immune function and
modulation after SCI that remain to be filled, potential opportunities to identify effective
therapeutics to better immune function will undoubtedly result in improved quality of life
for those living with SCI.
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